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1. Introduction

With the advent of high energy colliders with collision energies in the TeV range, progress in

understanding the problem of ultrahigh energy particle scattering now involves knowledge

about the dynamics of Quantum-Chromodynamics (QCD) above or close to the decon-

finement scale. For instance, a new state of matter of deconfined quarks and gluons with

fluid-like properties seems to have been created in Au+Au collisions at total collision en-

ergies of ∼ 40 TeV at the Relativistic Heavy-Ion Collider (RHIC) [1 – 4]. The upcoming

Large Hadron Collider (LHC) will collide protons at ∼ 14 TeV and lead nuclei at up to

∼ 1100 TeV. Although not a collider, the Pierre-Auger observatory probes collision energies

much beyond that, at up to ∼ 108 TeV.

QCD is a complicated theory to solve, especially when asking about real-time dynamics

at energies close to the deconfinement scale. Traditionally one could only resort to weak

coupling approaches, which due to asymptotic freedom are guaranteed to work well for bulk

systems having extremely high energy densities (though not necessarily for those probed

by RHIC and the LHC). In particular, phenomenological descriptions of RHIC data by

applying hydrodynamic simulations with low viscosity [5] or none at all [6 – 8] seem to

suggest that at these energy densities, the system is not weakly coupled [9, 10].

Recently, the conjectured duality between strongly coupled gauge theories and grav-

ity [11] has opened up a new window for studying strong coupling phenomena in a range

of different gauge theories (although a dual description of QCD remains elusive to date).

Concerning real-time dynamics, a lot of progress has been made in calculating transport

coefficients for hydrodynamics in strong coupling, such as shear viscosity [12]. However,

these calculations probe the response of a static medium at finite temperature, which —

while important for near-equilibrium dynamics — do not give insights into the early, far

from equilibrium stages of a high energy particle collision.

From the gauge theory point of view this earliest stage following the collision has to

describe the transition of the system to an equilibrium state with a well-defined temperature
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(if the system lives long enough), which is referred to as thermalization. The gravity

dual picture of thermalization is the formation of a black hole in the bulk, its Hawking

temperature being identified with the temperature in the gauge theory on the boundary

of the Anti-de-Sitter (AdS) space. Thus the problem of thermalization in strongly coupled

gauge theories becomes related to the problem of black hole formation, which has been

noted before [13] (see also [14, 15] for a different proposal on thermalization involving

black holes).

As an aside, it should be pointed out that thermalization in a high energy particle

collision is not guaranteed, and even if once achieved, not easy to maintain due to the

rapid (initially one-dimensional) expansion of the system.

In an inspiring work Janik and Peschanski [16] showed that an expanding thermal sys-

tem corresponded to a gravity dual where the black hole was moving in the fifth dimension.

Subsequent work on gauge-gravity duality in expanding systems continues to clarify the

near-equilibrium late-time behavior of high energy particle collision duals [17 – 27].

Little is known about the dynamics in strongly coupled gauge theories shortly after a

high energy collision, e.g. far from equilibrium. Notable exceptions are studies assuming

independence from longitudinal dynamics [28], treating one space dimension instead of

three [29] and a characterization of the dual horizon structure following a collision of two

already deconfined plasmas [30]. We differ from [30] by using a simpler model for the

incident states, which allows us to calculate the energy-momentum tensor analytically.

Differences of our approach to refs. [28, 29] will be discussed below.

In this article we shall consider the problem of two colliding infinite sheets of matter

in N = 4 SYM in the large Nc and large ’t Hooft coupling limit. Via the gauge-gravity

duality we reinterpret the problem as the collision of two shock waves on the boundary of a

five-dimensional AdS space. Solving for the five dimensional metric and using holographic

renormalization, one thus is able to extract information about the real time dynamics of

the energy momentum tensor of the gauge theory after the collision.

Our work is organized as follows: in section 2 we construct the line-element for two

colliding shock-waves in Rosen coordinates. Section 3 deals with holographic renormaliza-

tion: we construct there the energy momentum tensor perturbatively in proper time and

check that it is covariantly conserved and traceless. We provide a physical interpretation

of our results in section 4, and put them into the perspective of the literature.

2. Setup and solution

Following [16], we consider for N = 4 SYM in the strong coupling, large Nc regime, an

energy-momentum tensor (EMT) of the single-shock-wave-form

T++ = 0, T+− = 0 , T−− = µ1 δ(x−) , Txx = Tyy = 0 (2.1)

in light-cone coordinates x± = t±z√
2
. This form serves as a toy model for a large particle

moving nearly at the speed of light along the x+ direction with transverse energy density
dE
dx⊥

= µ1. The attribute “large” refers to the perpendicular directions, x⊥ = (x, y). In
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the gravity dual description, in Fefferman-Graham coordinates [31] this corresponds to the

AdS5 line element with a single shock-wave

ds2 =
−2dx+dx− + µ1z

4δ(x−)dx−2 + dx⊥
2 + dz2

z2
, (2.2)

which is an exact solution of the Einstein equations with negative cosmological constant

(normalized here to Λ = −6)

Rµν − 1

2
gµνR − 6gµν = 0 . (2.3)

In the following we shall consider the collision of two shock-waves of the

form (2.1), (2.2), corresponding to an EMT before the collision (t < 0) of

T++ = µ2 δ(x+) , T+− = 0 , T−− = µ1 δ(x−), Txx = Tyy = 0 . (2.4)

This problem was posed originally in ref. [16]. The simple question we want to address is:

what is the form of the EMT after the collision, and in particular in the forward light-cone

(x± > 0)?

This setup of particle collisions in strongly coupled gauge theories mirrors closely

that of Kovner, McLerran and Weigert [32] who treated collisions using classical Yang-

Mills dynamics. Starting from a charge current Jµ = δ
µ
∓δ(x±)ρ1,2(x⊥) and solving the

classical Yang-Mills equations DµFµν = Jν they showed that the resulting gauge fields

(and hence the EMT) were functions of the product x+x− only, and therefore “boost-

invariant” in the sense of Bjorken [33]. Quantum fluctuations are expected to break this

boost-invariance [34], since even tiny fluctuations are unstable to exponential growth [35].

Our model (2.4) in some sense corresponds to the simple case ρ1,2(x⊥) = µ1,2 = const.,

but is extendable to a situation where the ρ’s are taken from the Color Glass Condensate

framework [36, 37]. We shall report on this interesting generalization in a subsequent

work [38].

In order to calculate the energy momentum tensor in the forward light-cone for strongly

coupled N = 4 SYM, let us first use the coordinate transformation1 [39]

x+ = u +
1

2
µ1θ(v) z̃4 + 2µ2

1 v θ2(v) z̃6 , x− = v , z = z̃ + 2µ1 v θ(v)z̃3 , (2.5)

where θ(v) is the Heaviside step function, to bring eq. (2.2) into the so-called Rosen form,

ds2 =
−2dudv + dx⊥

2 +
[

1 + 6µ1z̃
2 v θ(v)

]2
dz̃2

z̃2 [1 + 2µ1z̃2 v θ(v)]2
. (2.6)

This form is advantageous since it implies a metric that is continuous across the light-like

hypersurface v = 0. Indeed, since one can do a similar transformation for the second shock

1In some of the expressions below positive powers of the θ-function will appear. For positive and negative

argument the square of the θ-function is equivalent to the θ-function, so the only complication arises if the

argument vanishes. However, it turns out that all expressions of the type θn(x) are multiplied by xm with

positive m, and thus this complication and the associated ambiguity of defining θn(0) is of no relevance

here.
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wave, the precollision line element can be written as a simple superposition of the two

(c.f. [39]),

ds2 =
−2dudv + dx⊥

2 +
[

1 + 6µ1z̃
2 v θ(v) + 6µ2z̃

2 u θ(u)
]2

dz̃2

z̃2 [1 + 2µ1z̃2 v θ(v) + 2µ2z̃2 u θ(u)]2
. (2.7)

Since the metric has to be continuous and piece-wise differentiable in these coordi-

nates, all corrections to the above line element after collision have to be proportional to

uv θ(u) θ(v) (see appendix A for a more detailed discussion). The calculation of these cor-

rections is most conveniently done by introducing the coordinates of proper time τ̃ =
√

2uv

and space-time rapidity η̃ = 1
2 ln u

v . In these coordinates the hyper-surface spanned by

u = v = 0 becomes τ̃ = 0 and the condition θ(u)θ(v) 6= 0 translates into τ̃ being real and

positive. Introducing µ =
√

2µ1µ2 and Y = 1
2 ln µ1

µ2
, we then make the following ansatz for

the line element after the collision

ds2 =
− [1 + K(τ̃ , η̃, z̃)] dτ̃2 + [1 + L(τ̃ , η̃, z̃)] τ̃2dη̃2 + [1 + H(τ̃ , η̃, z̃)] dx⊥

2

z̃2 [1 + 2z̃2µτ̃ cosh(Y − η̃)]2

+
[1 + M(τ̃ , η̃, z̃)]

[

1 + 6z̃2µτ̃ cosh(Y − η̃)
]2

dz̃2

z̃2 [1 + 2z̃2µτ̃ cosh(Y − η̃)]2
, (2.8)

where K,L,H,M are functions that vanish at τ̃ = 0 and have to be determined by solving

the Einstein equations (2.3).

Determining K,L,H,M for all values of τ̃ may be possible with existing numerical

methods [41, 40, 38]. Finding full analytical solutions is much harder, so we limit ourselves

to the restricted regime of early times τ̃ ≪ 1. For this regime we use a power series ansatz

in τ̃ for the functions K,L,H,M and determine the coefficients by solving the Einstein

equations order by order in proper time. This is readily done with GRTensor.2 One finds

K(τ̃ , η̃, z̃) = c1µ
2τ̃2z̃4 +

182 + 10c1

3
µ3τ̃3z̃6 cosh[Y − η̃] − 5 + c1

3
µ2τ̃4z̃2

+
838 + 160c1 + c2

1 + 45c2

9
µ4τ̃4z̃8 − 154 + 2c1

3
µ4τ̃4z̃8 cosh[2(Y − η̃)] + O(τ̃5)

L(τ̃ , η̃, z̃) =
−16 + c1

3
µ2τ̃2z̃4 +

94 + 2c1

3
µ3τ̃3z̃6 cosh[Y − η̃] − 5 + c1

3
µ2τ̃4z̃2

+c2µ
4τ̃4z̃8 − 806 + 10c1

15
µ4τ̃4z̃8 cosh[2(Y − η̃)] + O(τ̃5)

H(τ̃ , η̃, z̃) = −2µ2τ̃2z̃4 − 22 + 2c1

3
µ3τ̃3z̃6 cosh[Y − η̃] − 5 + c1

3
µ2τ̃4z̃2

−16 + 2c1

3
µ4τ̃4z̃8 +

8 − 2c1

3
µ4τ̃4z̃8 cosh[2(Y − η̃)] + O(τ̃5)

M(τ̃ , η̃, z̃) = 16µ2τ̃2z̃4 − 244 − 4c1

3
µ3τ̃3z̃6 cosh[Y − η̃] +

10 + 2c1

3
µ2τ̃4z̃2

+
1076 + 4c1

3
µ4τ̃4z̃8 +

824 − 8c1

3
µ4τ̃4z̃8 cosh[2(Y − η̃)] + O(τ̃5) , (2.9)

2
GRTensorII is a package that runs within Maple or Mathematica but distinct from packages dis-

tributed with Maple or Mathematica. It is distributed freely on the World-Wide-Web from the address:

http://grtensor.org.
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where c1, c2 are freely choosable integration constants. Amusingly, all terms of O(τ̃4z̃2)

in (2.9) cancel for the choice c1 = −5; however, at higher orders there is no similar freedom,

and e.g. the O(τ̃7z̃2) terms cannot be canceled. It is straightforward, but a little tedious

to calculate K,L,H,M to arbitrary order in τ̃ . We have performed the calculation up to

(including) O(τ̃10), but believe little insight can be gained by spelling out this solution

here.

The constants c1, c2 reflect a residual gauge freedom,

Lξ gµν = ξα∂αgµν + gµα∂νξα + gαν∂µξα . (2.10)

To exhibit the property of c1 as parameter of residual gauge transformations we focus here

on the leading order, i.e., we consider only terms up to (including) order τ̃2 (with the

exception of gη̃η̃, which has to be considered up to order τ̃4). With the generator

ξτ̃ =
c1µ

2τ̃3z̃4

6
, ξµ = 0 otherwise (2.11)

the gauge transformation acts on the metric as follows:

Lξ gτ̃ τ̃ = − 1

z̃2
c1µ

2τ̃2z̃4 + O(τ̃3) , Lξ gη̃η̃ =
τ̃2

z̃2

c1µ
2τ̃2z̃4

3
+ O(τ̃5) (2.12)

All other components of the metric are either not influenced at all, or only at order τ̃3.

Comparison of (2.12) with (2.9) to order τ̃2 reveals that the terms generated by the residual

gauge transformation (2.10) with generator (2.11) are precisely the c1-dependent terms

in (2.9). This shows clearly that the freedom to choose c1 corresponds to a residual gauge

freedom of the (partially) gauge fixed metric (2.8), and thus we should expect that physical

quantities, like the EMT, are independent from c1. We shall demonstrate this in the next

section. A similar analysis applies to higher orders in τ̃ , but the corresponding generator

of residual gauge transformations is considerably more complicated than (2.11).

3. Holographic renormalization

Having determined the solution to the metric for short times after the collision in the

previous section, we focus now on extracting information about the gauge theory EMT

in this section. Holographic renormalization [42] gives a simple prescription to obtain the

EMT once the metric is in the Fefferman-Graham form,

ds2 =
gijdxidxj

z2
+

z4Tijdxidxj

z2
+

∞
∑

n=0

z6+2nh
(n)
ij dxidxj

z2
, (3.1)

where i collectively denote the coordinates on the AdS boundary (z = 0), gij is the metric

on the boundary (assumed to be Minkowski) and Tij the gauge theory EMT. We can
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achieve to bring eq. (2.8) with (2.9) into the form (3.1) by the coordinate transformation

τ̃ = τ +
∞
∑

n=0

tn(τ, η)z4+2n

η̃ = η +

∞
∑

n=0

en(τ, η)z4+2n

z̃ = z +

∞
∑

n=0

an(τ, η)z3+2n , (3.2)

where the z = 0 transformation in τ̃ , η̃ has been chosen such that gij maintains the form

gijdxidxj = −dτ2 + τ2dη2 + dx2
⊥ .

One finds that the matching to lowest orders requires

a0(τ, η) = −2µτ cosh[Y − η] − 5 + c1

6
µ2τ4 − µ3τ7 cosh[Y − η] + O(τ8)

t0(τ, η) =
1

4
∂τa0(τ, η)

e0(τ, η) = − 1

4τ2
∂ηa0(τ, η) (3.3)

and in turn leads to the EMT

Tττ = µ2τ2 − 3µ3τ5 cosh[Y − η] +
1

24
µ4τ8 (107 + 90 cosh[2(Y − η)]) + O(τ10)

Tητ = −3µ3τ6 sinh[Y − η] +
45

4
µ4τ9 sinh[2(Y − η)] + O(τ10)

τ−2Tηη = −3µ2τ2 + 21µ3τ5 cosh[Y − η] − 3

8
µ4τ8 (107 + 150 cosh[2(Y − η)]) + O(τ10)

Txx = Tyy = 2µ2τ2 − 12µ3τ5 cosh[Y − η] +
5

24
µ4τ8 (107 + 144 cosh[2(Y − η)]) + O(τ10) .

(3.4)

Note that the gauge theory EMT is independent from the residual gauge parameters

c1, c2, . . .. Moreover, it obeys T
µ
µ = 0 and ∇µT µν = 0, as it should, where we recall

that ∇µ is the covariant derivative with respect to the metric gij .

4. Physics interpretation

Our main result, eq. (3.4), gives the energy momentum tensor for short times after the

collision of two sheets of matter in a strongly coupled gauge theory. A few remarks are

in order: a non-vanishing off-diagonal element of Tiτ in τ, η coordinates means there is a

flow of energy in the direction i, so the EMT is not in its local rest-frame. Locally, the

EMT may always be brought into its rest-frame by a Lorentz boost (e.g. η → η + φ).

However, the form of eq. (3.4) is such that the EMT may not be brought into its rest-

frame globally (i.e. for all η simultaneously), since it is explicitly dependent on η. Put
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differently, the EMT (3.4) is not boost-invariant in the sense of Bjorken. This is a major

difference to the result found when treating the gauge interaction as classical Yang-Mills

fields (see discussion in the introduction). It may still be possible that boost-invariance is

recovered (at least approximately) at late times, where our solution breaks down. The full

solution obtained in a lower dimensional model [29], where boost-invariance (violated by

construction at early times) is restored at late times, seems to suggest that this is the case.

Nevertheless, it is interesting to discuss the time behavior of the EMT for one particular

rest-frame, e.g. “central rapidity” η = Y . Then the individual diagonal components of

the EMT have the interpretation of (local) energy density (Tττ ), effective longitudinal

pressure (τ−2Tηη) and effective transverse pressure (Txx = Tyy). Keeping in mind that the

result (3.4) is valid only for τ > 0 since it does not contain the original discontinuities (2.4),

it is interesting to note that all components of Tµν are very small initially and grow only

proportional to τ2 (although with negative sign in the case of the longitudinal pressure).

We believe that this may be due to the simplicity of our model, and more specifically to

the absence of transverse (x⊥) dynamics in our ansatz for µ in (2.4). Along the same

lines, ref. [29] found that Tµν would vanish for all times had one started with (2.4) and

completely eliminated the transverse dimensions.

At first glance, our result (3.4) contradicts that of ref. [28], where it was found that

the energy density should behave as a constant for 0 < τ ≪ 1. However, ref. [28] based

their analysis on the assumption of boost-invariance, which is violated in our case, and

we have neglected transverse dynamics which could change the behavior of limτ→0 Tττ . It

may thus be possible to reconcile our results with that of ref. [28]. On the other hand,

ref. [28] forbid solutions of rising energy density by invoking the positive energy condition

Tµνωµων ≥ 0, where ωµ is a time-like vector (see also [16]). While this criterion is certainly

valid in classical gravity, it is somewhat questionable why it should apply to the EMT

of the boundary quantum field theory. After all, it is well-known that quantum fields

cannot always and everywhere satisfy all energy conditions [43], and even the weakest form

of energy conditions, the averaged null energy condition, can be violated for conformally

coupled quantum fields in 3+1 dimensions in any conformal quantum state [44]. It may be

confusing to find quantum effects in a classical gravity calculation: however, it should be

pointed out that these effects appear only at the boundary of AdS5, where the description

should be dual to a strongly coupled quantum field theory [11]. Indeed, the five-dimensional

EMT in our calculation trivially fulfills the positive energy condition, as it should for a

classical gravity calculation.

The breaking of boost-invariance of the EMT eq. (3.4) is a direct consequence of the

ansatz (2.4) for the incoming shockwaves. Namely, the relevant part of the precollision line

element is

ds2 ∼ z2
[

µ1δ(x
−)dx−2 + µ2δ(x

+)dx+2
]

, (4.1)

which — in terms of τ, η coordinates — has an explicit η dependence. It is somewhat

surprising, though, that one can obtain a boost-invariant line element when formally re-

placing δ(x) → ∂xδ(x), or similar structures.3 In such a case, we could not find a coordinate

3Ref. [29] proposed θ(x)/x2 to obtain boost-invariance.
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Figure 1: The early time behavior of the individual components of the EMT at η = Y .

transformation similar to eq. (2.5) in order to bring the line element into the Rosen form.

It is conceivable that it would amount to replacing vθ(v) and uθ(u) in eq. (2.7) by their

derivatives, in which case the line element would be manifestly boost-invariant and the

EMT start from a finite value. However, it is not evident how to interpret the physical

meaning of a collision of two shock waves given by derivatives of delta functions.

In figure 1 we show a plot of the energy density and effective pressures in the local

rest-frame for early times, which suggest that our small time expansion converges rapidly

up to times of µ1/3τ ∼ 0.4. At this time, the effective longitudinal pressure is still negative

and therefore the system is clearly not in equilibrium. At times µ1/3τ & 0.7 the expansion

in powers of τ seems to break down, possibly signaling the onset of a transition to an

equilibrated state, which from hydrodynamics is known to behave as Tττ ∼ τ−4/3.

It would be interesting to study in detail the horizon structure of eq. (2.8). Short of

doing this, we may hope to learn something about the position of the horizon by invok-

ing cosmic censorship, e.g. requiring that all singularities of the metric (2.8) are hidden

behind horizons. To this end, it is instructive to consider the minimum value of z̃ where

H(τ̃ , η̃, z̃) = −1 at early times. Approximating H by its first term, we expect a singularity

to appear at z̃4 ≤ 1
2µ2τ2 , which would have to be hidden by a horizon in order not to violate

cosmic censorship. Note that this implies the horizon is moving towards the boundary at

small times, in contrast to the situation at late times studied in ref. [16]. Given that in

our case the energy density is initially rising and that for static systems the temperature

is inversely proportional to the distance of the black brane to the boundary, this is not too

surprising. As a caveat, it should be pointed out that z̃4 ∼ 1
µ2τ2 is to be understood only

– 8 –
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as a very rough estimate of the singularity location since for these values of z̃ essentially

all terms of eq. (2.9) become of the same order, even at small times.

Assuming that a singularity really does appear at z̃4 ∼ 1
µ2τ2 , how long would it take

until the EMT at the boundary z = 0 “knows” about the formation of the black hole

(i.e. the thermalization of the system)? We again estimate the time by assuming the

information gets transported over the distance z̃ with the speed of light, so τ̃ ∼ z̃. Hence

we obtain a crude estimate of the thermalization time as a function of the transverse energy

density µ,

τtherm ∼ µ−1/3 , (4.2)

where the non-trivial dimensionless prefactor is O(1) in our simple estimate (from figure 1,

one can extract τtherm > 0.4µ−1/3). Taken at face value, this would imply extremely small

times τtherm ≪ 1 fm/c for modern colliders like RHIC or the LHC. However, it seems that

numerical simulations will be necessary to provide a detailed study of thermalization and

extract the dimensionless prefactor in (4.2) reliably. Moreover, in a more realistic model

than the one considered here, we expect the dynamics in the transverse coordinates x⊥ to

modify this thermalization time. We plan to study this in the near future [38].
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A. Distributions and energy conservation

In order to address distributional issues we make the following global Ansatz for the line

element in Rosen coordinates

ds2 =
−2dudvg1(u, v, z̃) +

(

u2dv2 + v2du2
)

g2(u, v, z̃) + g3(u, v, z̃)dx⊥
2 + g4(u, v, z̃)dz̃2

z̃2
.

(A.1)
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For the precollision line element we can write

g1(u, v, z̃) = g3(u, v, z̃) = f1(u, z̃)f1(v, z̃),

g2(u, v, z̃) = 0,

g4(u, v, z̃) = f2(u, z̃)f2(v, z̃),

f1(u, z̃) =
[

1 + 2µ̄z̃2 u θ(u)
]−2

,

f2(u, z̃) =
[

1 + 6µ̄z̃2 u θ(u)
]2 [

1 + 2µ̄z̃2 u θ(u)
]−2

,

where we have set µ1 = µ2 = µ̄ for simplicity. For this line element, the Einstein equa-

tions (2.3) do not contain any terms of the form δ(u), δ(v) which would be singular at

u = 0, v = 0. Nevertheless, when making an ansatz for the line element for u > 0, v > 0

one might be worried that this would introduce “spurious” singularities. To test for this,

we choose the ansatz

g1(u, v, z̃) = f1(u, z̃)f1(v, z̃) + O(uv)

g2(u, v, z̃) = θ(u)θ(v) (f5(u, z̃) + f5(v, z̃)) + O(uv)

g3(u, v, z̃) = f1(u, z̃)f1(v, z̃) + uvθ(u)θ(v) (f6(u, z̃) + f6(v, z̃)) + O(u2v2)

g4(u, v, z̃) = f2(u, z̃)f2(v, z̃) + uvθ(u)θ(v) (f7(u, z̃) + f7(v, z̃)) + O(u2v2), (A.2)

where f5(u, z̃), f6(u, z̃), f7(u, z̃) are required to be non-singular at u = 0, and we neglected

terms of higher order that result in regular terms in (2.3). Requiring that all terms of the

form δ(u), δ(v) cancel in the Einstein equations gives the condition

(f5(v, z̃) + f5(0, z̃)) 24µ̄2z̃4v2θ(v)2
(1 + 6µ̄z̃2vθ(v))

(1 + 2µ̄z̃2vθ(v))
− f7(v, z̃) − f7(0, z̃) (A.3)

−2 [f6(v, z̃) + f6(0, z̃)] (1 + 6µ̄z̃2vθ(v))2 = 0,

and likewise for v ↔ u. If eq. (A.3) is fulfilled, then the equations (2.3) are regular

at u = 0, v = 0 and can be conveniently solved in τ, η- coordinates. By recasting our

solution (2.8) into the form (A.2), we find

f5(v, z̃) + f5(0, z̃) =
1

(1 + 2µ̄z̃2vθ(v))2
lim
u→0

L − K

2uv
(A.4)

f6(v, z̃) + f6(0, z̃) =
1

(1 + 2µ̄z̃2vθ(v))2
lim
u→0

[

8z4µ̄2

(1 + 2µ̄z̃2vθ(v))
+

H

uv

]

f7(v, z̃) + f7(0, z̃) =
(1 + 6µ̄z̃2vθ(v))2

(1 + 2µ̄z̃2vθ(v))2
lim
u→0

[

8z4µ̄2

(1 + 2µ̄z̃2vθ(v))
− 72z4µ̄2

(1 + 6µ̄z̃2vθ(v))
+

M

uv

]

.

Inserting the expressions (2.9) with cosh[n(Y −η)] = 2n−1

(µτ)n
(unµ̄n + vnµ̄n) and µτ = 2µ̄

√
uv

and reinstating appropriate θ functions for every appearance of u, v, we obtain power series’

in v for the above f5, f6, f7, respectively. Using these, we have verified a posteriori that

our solution obeys eq. (A.3) order by order in v (and by symmetry also in u), and hence all

δ-functions in the Einstein equations cancel to that order. Since (2.8) is a solution to the

Einstein equations for arbitrarily small proper times, this implies that we know the metric

for u ≪ 1, v ≪ 1, including u = 0, v = 0.
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As a consequence of that, we are able to calculate the EMT for small (positive and

negative) x± by repeating the holographic renormalization procedure of section 3 for the

metric in the form (A.1) to Brinkmann coordinates. One finds

T−− = −1

2
∂2
−a0(x

+, x−) +
x+

x− θ(x+)θ(x−) lim
z→0

L − K

2z4
(A.5)

which using

a0(x
+, x−) = −2µ̄

(

x+θ(x+) + x−θ(x−)
)

− 5 + c1

3
µ̄24x+2x−2θ(x+)θ(x−) + O(x+3, x−3)

lim
z→0

L − K

2z4
= −4

3
(8 + c1)µ̄

2x+x−θ(x+)θ(x−) + O(x+2, x−2) (A.6)

becomes

T−− = µ̄δ(x−) − 4x+2µ̄2θ(x+)θ(x−) + O(x+3, x−). (A.7)

Note that in order for holographic renormalization to be consistent, all terms proportional

to z2 in L−K have to cancel. We have explicitly verified this up to O(τ10). By symmetry

we have

T++ = µ̄δ(x+) − 4x−2µ̄2θ(x+)θ(x−) + O(x−3, x+), (A.8)

and from (3.4) we can glean

T+− =
1

2

(

Tττ − τ−2Tηη

)

= 8x+x−µ̄2θ(x+)θ(x−) + O(x−2, x+2). (A.9)

This can be used to calculate the energy density in the more familiar t, z coordinates. The

transformation is straightforward and one finds

T 00(t, z) =
1

2

(

T++ + 2T+− + T−−)

(A.10)

≃ 1

2
µ̄

(

δ(x+) + δ(x−)
)

− 2µ̄2θ(x+)θ(x−)
(

x+2 + x−2 − 4x+x−)

≃ 1√
2
µ̄ (δ(t + z) + δ(t − z)) + 2µ̄2θ(t2 − z2)

(

t2 − 3z2
)

.

Taking the result (to this order of calculation) at face value, for fixed time t the energy

density deposited in the forward lightcone is positive at the collision point z = 0 (corre-

sponding to mid-rapidity η = 0), while it becomes negative for some z2 . t2, especially

close to the (positive) δ-functions at z2 = t2. We believe this is allowed for a quantum field

theory, as discussed in section 4, but concede that the physical interpretation of this result

demands further study. Calculating the total energy at any given time t gives

E(t) ≡
∫ ∞

−∞
dzT 00(t, z) =

√
2µ̄, (A.11)

up to the accuracy of the approximation. Therefore, the total system energy is conserved

after the collision, which serves as yet another check on our result.
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